Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Mol Cell ; 81(17): 3623-3636.e6, 2021 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-34270916

RESUMO

ATP- and GTP-dependent molecular switches are extensively used to control functions of proteins in a wide range of biological processes. However, CTP switches are rarely reported. Here, we report that a nucleoid occlusion protein Noc is a CTPase enzyme whose membrane-binding activity is directly regulated by a CTP switch. In Bacillus subtilis, Noc nucleates on 16 bp NBS sites before associating with neighboring non-specific DNA to form large membrane-associated nucleoprotein complexes to physically occlude assembly of the cell division machinery. By in vitro reconstitution, we show that (1) CTP is required for Noc to form the NBS-dependent nucleoprotein complex, and (2) CTP binding, but not hydrolysis, switches Noc to a membrane-active state. Overall, we suggest that CTP couples membrane-binding activity of Noc to nucleoprotein complex formation to ensure productive recruitment of DNA to the bacterial cell membrane for nucleoid occlusion activity.


Assuntos
Bacillus subtilis/citologia , Citidina Trifosfato/metabolismo , Pirofosfatases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/fisiologia , Divisão Celular/genética , Divisão Celular/fisiologia , Membrana Celular/metabolismo , Cromossomos Bacterianos/genética , Citidina Trifosfato/fisiologia , Proteínas do Citoesqueleto/genética , Pirofosfatases/fisiologia
2.
Nucleic Acids Res ; 46(22): 11910-11926, 2018 12 14.
Artigo em Inglês | MEDLINE | ID: mdl-30380104

RESUMO

The principal route for dissemination of antibiotic resistance genes is conjugation by which a conjugative DNA element is transferred from a donor to a recipient cell. Conjugative elements contain genes that are important for their establishment in the new host, for instance by counteracting the host defense mechanisms acting against incoming foreign DNA. Little is known about these establishment genes and how they are regulated. Here, we deciphered the regulation mechanism of possible establishment genes of plasmid p576 from the Gram-positive bacterium Bacillus pumilus. Unlike the ssDNA promoters described for some conjugative plasmids, the four promoters of these p576 genes are repressed by a repressor protein, which we named Reg576. Reg576 also regulates its own expression. After transfer of the DNA, these genes are de-repressed for a period of time until sufficient Reg576 is synthesized to repress the promoters again. Complementary in vivo and in vitro analyses showed that different operator configurations in the promoter regions of these genes lead to different responses to Reg576. Each operator is bound with extreme cooperativity by two Reg576-dimers. The X-ray structure revealed that Reg576 has a Ribbon-Helix-Helix core and provided important insights into the high cooperativity of DNA recognition.


Assuntos
Bacillus pumilus/genética , Proteínas de Bactérias/química , DNA/química , Transferência Genética Horizontal , Plasmídeos/química , Proteínas Repressoras/química , Bacillus pumilus/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sequência de Bases , Sítios de Ligação , Clonagem Molecular , Conjugação Genética , DNA/genética , DNA/metabolismo , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Conformação de Ácido Nucleico , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Shigella flexneri/genética , Shigella flexneri/metabolismo
3.
Front Microbiol ; 8: 2138, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29163424

RESUMO

Bacterial conjugation is the process by which a conjugative element (CE) is transferred horizontally from a donor to a recipient cell via a connecting pore. One of the first steps in the conjugation process is the formation of a nucleoprotein complex at the origin of transfer (oriT), where one of the components of the nucleoprotein complex, the relaxase, introduces a site- and strand specific nick to initiate the transfer of a single DNA strand into the recipient cell. In most cases, the nucleoprotein complex involves, besides the relaxase, one or more additional proteins, named auxiliary proteins, which are encoded by the CE and/or the host. The conjugative plasmid pLS20 replicates in the Gram-positive Firmicute bacterium Bacillus subtilis. We have recently identified the relaxase gene and the oriT of pLS20, which are separated by a region of almost 1 kb. Here we show that this region contains two auxiliary genes that we name aux1LS20 and aux2LS20 , and which we show are essential for conjugation. Both Aux1LS20 and Aux2LS20 are predicted to contain a Ribbon-Helix-Helix DNA binding motif near their N-terminus. Analyses of the purified proteins show that Aux1LS20 and Aux2LS20 form tetramers and hexamers in solution, respectively, and that they both bind preferentially to oriTLS20 , although with different characteristics and specificities. In silico analyses revealed that genes encoding homologs of Aux1LS20 and/or Aux2LS20 are located upstream of almost 400 relaxase genes of the RelLS20 family (MOBL) of relaxases. Thus, Aux1LS20 and Aux2LS20 of pLS20 constitute the founding member of the first two families of auxiliary proteins described for CEs of Gram-positive origin.

4.
PLoS Genet ; 13(2): e1006586, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-28207825

RESUMO

Antibiotic resistance is a serious global problem. Antibiotic resistance genes (ARG), which are widespread in environmental bacteria, can be transferred to pathogenic bacteria via horizontal gene transfer (HGT). Gut microbiomes are especially apt for the emergence and dissemination of ARG. Conjugation is the HGT route that is predominantly responsible for the spread of ARG. Little is known about conjugative elements of Gram-positive bacteria, including those of the phylum Firmicutes, which are abundantly present in gut microbiomes. A critical step in the conjugation process is the relaxase-mediated site- and strand-specific nick in the oriT region of the conjugative element. This generates a single-stranded DNA molecule that is transferred from the donor to the recipient cell via a connecting channel. Here we identified and characterized the relaxosome components oriT and the relaxase of the conjugative plasmid pLS20 of the Firmicute Bacillus subtilis. We show that the relaxase gene, named relLS20, is essential for conjugation, that it can function in trans and provide evidence that Tyr26 constitutes the active site residue. In vivo and in vitro analyses revealed that the oriT is located far upstream of the relaxase gene and that the nick site within oriT is located on the template strand of the conjugation genes. Surprisingly, the RelLS20 shows very limited similarity to known relaxases. However, more than 800 genes to which no function had been attributed so far are predicted to encode proteins showing significant similarity to RelLS20. Interestingly, these putative relaxases are encoded almost exclusively in Firmicutes bacteria. Thus, RelLS20 constitutes the prototype of a new family of relaxases. The identification of this novel relaxase family will have an important impact in different aspects of future research in the field of HGT in Gram-positive bacteria in general, and specifically in the phylum of Firmicutes, and in gut microbiome research.


Assuntos
Proteínas de Bactérias/genética , Conjugação Genética , Farmacorresistência Bacteriana/genética , Endodesoxirribonucleases/genética , Firmicutes/enzimologia , Sequência de Aminoácidos , Bacillus subtilis/enzimologia , DNA de Cadeia Simples/genética , Endodesoxirribonucleases/isolamento & purificação , Firmicutes/genética , Microbioma Gastrointestinal/genética , Transferência Genética Horizontal , Humanos , Plasmídeos/genética
5.
Nat Microbiol ; 2: 16253, 2017 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-28085152

RESUMO

The bacterial cell wall is a highly conserved essential component of most bacterial groups. It is the target for our most frequently used antibiotics and provides important small molecules that trigger powerful innate immune responses. The wall is composed of glycan strands crosslinked by short peptides. For many years, the penicillin-binding proteins were thought to be the key enzymes required for wall synthesis. RodA and possibly other proteins in the wider SEDS (shape, elongation, division and sporulation) family have now emerged as a previously unknown class of essential glycosyltranferase enzymes, which play key morphogenetic roles in bacterial cell wall synthesis. We provide evidence in support of this role and the discovery of small natural product molecules that probably target these enzymes. The SEDS proteins have exceptional potential as targets for new antibacterial therapeutic agents.


Assuntos
Antibacterianos/farmacologia , Bacillus subtilis/enzimologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Peptidoglicano Glicosiltransferase/metabolismo , Peptidoglicano/metabolismo , Antibacterianos/metabolismo , Bacillus subtilis/efeitos dos fármacos , Bacillus subtilis/metabolismo , Escherichia coli/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Nucleotidiltransferases/metabolismo , Proteínas de Ligação às Penicilinas/metabolismo
7.
Mol Microbiol ; 101(2): 333-50, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27059541

RESUMO

Chromosome segregation is an essential process of cell multiplication. In prokaryotes, segregation starts with the newly replicated sister origins of replication, oriCs, which move apart to defined positions in the cell. We have developed a genetic screen to identify mutants defective in placement of oriC during spore development in the Gram-positive bacterium Bacillus subtilis. In addition to the previously identified proteins Soj and DivIVA, our screen identified several new factors involved in polar recruitment of oriC: a reported regulator of competence ComN, and the regulators of division site selection MinD and MinJ. Previous work implicated Soj as an important regulator of oriC positioning in the cell. Our results suggest a model in which the DivIVA-interacting proteins ComN and MinJ recruit MinD to the cell pole, and that these proteins work upstream of Soj to enable oriC placement. We show that these proteins form a polar complex, which acts in parallel with but distinct from the sporulation-specific RacA pathway of oriC placement, and also functions during vegetative growth. Our study further shows that MinD has two distinct cell cycle roles, in cell division and chromosome segregation, and highlights that cell probably use multiple parallel mechanisms to ensure accurate chromosome segregation.


Assuntos
Bacillus subtilis/genética , Polaridade Celular/genética , Segregação de Cromossomos/genética , Bacillus subtilis/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ciclo Celular/metabolismo , Divisão Celular/genética , Polaridade Celular/fisiologia , Cromossomos Bacterianos/genética , Cromossomos Bacterianos/metabolismo , Replicação do DNA/genética , Proteínas de Ligação a DNA/metabolismo , Mutação , Origem de Replicação/genética , Origem de Replicação/fisiologia , Esporos Bacterianos/metabolismo
8.
PLoS Genet ; 10(10): e1004733, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25340403

RESUMO

Plasmid conjugation plays a significant role in the dissemination of antibiotic resistance and pathogenicity determinants. Understanding how conjugation is regulated is important to gain insights into these features. Little is known about regulation of conjugation systems present on plasmids from Gram-positive bacteria. pLS20 is a native conjugative plasmid from the Gram-positive bacterium Bacillus subtilis. Recently the key players that repress and activate pLS20 conjugation have been identified. Here we studied in detail the molecular mechanism regulating the pLS20 conjugation genes using both in vivo and in vitro approaches. Our results show that conjugation is subject to the control of a complex genetic switch where at least three levels of regulation are integrated. The first of the three layers involves overlapping divergent promoters of different strengths regulating expression of the conjugation genes and the key transcriptional regulator RcoLS20. The second layer involves a triple function of RcoLS20 being a repressor of the main conjugation promoter and an activator and repressor of its own promoter at low and high concentrations, respectively. The third level of regulation concerns formation of a DNA loop mediated by simultaneous binding of tetrameric RcoLS20 to two operators, one of which overlaps with the divergent promoters. The combination of these three layers of regulation in the same switch allows the main conjugation promoter to be tightly repressed during conditions unfavorable to conjugation while maintaining the sensitivity to accurately switch on the conjugation genes when appropriate conditions occur. The implications of the regulatory switch and comparison with other genetic switches involving DNA looping are discussed.


Assuntos
Conjugação Genética , Resistência Microbiana a Medicamentos/genética , Plasmídeos/genética , Transcrição Gênica , Bacillus subtilis/genética , Regulação Bacteriana da Expressão Gênica , Regiões Promotoras Genéticas
9.
PLoS Genet ; 9(10): e1003892, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24204305

RESUMO

Horizontal gene transfer mediated by plasmid conjugation plays a significant role in the evolution of bacterial species, as well as in the dissemination of antibiotic resistance and pathogenicity determinants. Characterization of their regulation is important for gaining insights into these features. Relatively little is known about how conjugation of Gram-positive plasmids is regulated. We have characterized conjugation of the native Bacillus subtilis plasmid pLS20. Contrary to the enterococcal plasmids, conjugation of pLS20 is not activated by recipient-produced pheromones but by pLS20-encoded proteins that regulate expression of the conjugation genes. We show that conjugation is kept in the default "OFF" state and identified the master repressor responsible for this. Activation of the conjugation genes requires relief of repression, which is mediated by an anti-repressor that belongs to the Rap family of proteins. Using both RNA sequencing methodology and genetic approaches, we have determined the regulatory effects of the repressor and anti-repressor on expression of the pLS20 genes. We also show that the activity of the anti-repressor is in turn regulated by an intercellular signaling peptide. Ultimately, this peptide dictates the timing of conjugation. The implications of this regulatory mechanism and comparison with other mobile systems are discussed.


Assuntos
Movimento Celular/genética , Transferência Genética Horizontal , Peptídeos e Proteínas de Sinalização Intercelular/genética , Plasmídeos/genética , Bacillus subtilis/genética , Resistência Microbiana a Medicamentos/genética , Regulação Bacteriana da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Peptídeos e Proteínas de Sinalização Intercelular/fisiologia , Dados de Sequência Molecular , Plasmídeos/fisiologia , Transdução de Sinais/genética
10.
Mol Microbiol ; 74(2): 395-408, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19737355

RESUMO

The molecular mechanisms underlying cell growth, cell division and pathogenesis in Streptococcus pneumoniae are still not fully understood. Single-cell methodologies are potentially of great value to investigate S. pneumoniae cell biology. Here, we report the construction of novel plasmids for single and double cross-over integration of functional fusions to the gene encoding a fast folding variant of the green fluorescent protein (GFP) into the S. pneumoniae chromosome. We have also established a zinc-inducible system for the fine control of gfp-fusion gene expression and for protein depletion experiments in S. pneumoniae. Using this novel single cell toolkit, we have examined the cellular localization of the proteins involved in the essential process of choline decoration of S. pneumoniae teichoic acid. GFP fusions to LicA and LicC, enzymes involved in the activation of choline, showed a cytoplasmic distribution, as predicted from their primary sequences. A GFP fusion to the choline importer protein LicB showed clear membrane localization. GFP fusions to LicD1 and LicD2, enzymes responsible for loading of teichoic acid subunits with choline, are also membrane-associated, even though both proteins lack any obvious membrane spanning domain. These results indicate that the decoration of teichoic acid by the LicD enzymes is a membrane-associated process presumably occurring at lipid-linked teichoic acid precursors.


Assuntos
Proteínas de Bactérias/metabolismo , Colina/metabolismo , Proteínas de Fluorescência Verde/metabolismo , Streptococcus pneumoniae/enzimologia , Clonagem Molecular , Citoplasma/metabolismo , DNA Bacteriano/genética , Regulação Bacteriana da Expressão Gênica , Genes Reporter , Proteínas de Membrana/metabolismo , Microscopia de Fluorescência , Plasmídeos , Streptococcus pneumoniae/genética , Ácidos Teicoicos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...